Elongation factor-2 kinase regulates TG2/β1 integrin/Src/uPAR pathway and epithelial–mesenchymal transition mediating pancreatic cancer cells invasion
نویسندگان
چکیده
Pancreatic ductal adenocarcinoma is one of the lethal cancers with extensive local tumour invasion, metastasis, early systemic dissemination and poorest prognosis. Thus, understanding the mechanisms regulating invasion/metastasis and epithelial-mesenchymal transition (EMT), is the key for developing effective therapeutic strategies for pancreatic cancer (PaCa). Eukaryotic elongation factor-2 kinase (eEF-2K) is an atypical kinase that we found to be highly up-regulated in PaCa cells. However, its role in PaCa invasion/progression remains unknown. Here, we investigated the role of eEF-2K in cellular invasion, and we found that down-regulation of eEF-2K, by siRNA or rottlerin, displays impairment of PaCa cells invasion/migration, with significant decreases in the expression of tissue transglutaminase (TG2), the multifunctional enzyme implicated in regulation of cell attachment, motility and survival. These events were associated with reductions in β1 integrin/uPAR/MMP-2 expressions as well as decrease in Src activity. Furthermore, inhibition of eEF-2K/TG2 axis suppresses the EMT, as demonstrated by the modulation of the zinc finger transcription factors, ZEB1/Snail, and the tight junction proteins, claudins. Importantly, while eEF-2K silencing recapitulates the rottlerin-induced inhibition of invasion and correlated events, eEF-2K overexpression, by lentivirus-based expression system, suppresses such rottlerin effects and potentiates PaCa cells invasion/migration capability. Collectively, our results show, for the first time, that eEF-2K is involved in regulation of the invasive phenotype of PaCa cells through promoting a new signalling pathway, which is mediated by TG2/β1 integrin/Src/uPAR/MMP-2, and the induction of EMT biomarkers which enhance cancer cell motility and metastatic potential. Thus, eEF-2K could represent a novel potential therapeutic target in pancreatic cancer.
منابع مشابه
Distinct ligand binding sites in integrin α3β1 regulate matrix adhesion and cell–cell contact
The integrin alpha3beta1 mediates cellular adhesion to the matrix ligand laminin-5. A second integrin ligand, the urokinase receptor (uPAR), associates with alpha3beta1 via a surface loop within the alpha3 beta-propeller (residues 242-246) but outside the laminin binding region, suggesting that uPAR-integrin interactions could signal differently from matrix engagement. To explore this, alpha3-/...
متن کاملEpithelial to mesenchymal transition concept in Cancer: Review article
Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...
متن کاملNDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells
Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...
متن کاملThe Diacylglycerol Kinase α/Atypical PKC/β1 Integrin Pathway in SDF-1α Mammary Carcinoma Invasiveness
Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the...
متن کاملECRG2 regulates cell migration/invasion through urokinase-type plasmin activator receptor (uPAR)/beta1 integrin pathway.
ECRG2 is a novel gene that shows sequence similarity to KAZAL-type serine protease inhibitor. We have previously demonstrated that ECRG2 inhibits migration/invasion of lung cancer PG cells. However, the mechanism by which ECRG2 performs these activities is a compelling question. Urokinase-type plasmin activator (uPA) binding to uPAR induces migration/invasion through multiple interactors includ...
متن کامل